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A Secure and Optimally Efficient
Multi-Authority Election Scheme

Ronald Cramer? Rosario Gennaro?? Berry Schoenmakers???

Abstract. In this paper we present a new multi-authority secret-ballot
election scheme that guarantees privacy, universal verifiability, and ro-
bustness. It is the first scheme for which the performance is optimal
in the sense that time and communication complexity is minimal both
for the individual voters and the authorities. An interesting property
of the scheme is that the time and communication complexity for the
voter is independent of the number of authorities. A voter simply posts
a single encrypted message accompanied by a compact proof that it con-
tains a valid vote. Our result is complementary to the result by Cramer,
Franklin, Schoenmakers, and Yung in the sense that in their scheme
the work for voters is linear in the number of authorities but can be
instantiated to yield information-theoretic privacy, while in our scheme
the voter’s effort is independent of the number of authorities but always
provides computational privacy-protection. We will also point out that
the majority of proposed voting schemes provide computational privacy
only (often without even considering the lack of information-theoretic
privacy), and that our new scheme is by far superior to those schemes.

1 Introduction

In the cryptographic literature, electronic voting protocols are known as the
prime examples of secure multi-party computations. Many papers have been
written on the subject and by now an extensive list of properties and require-
ments is generally accepted as desirable. We will consider these properties in
this paper, among which are privacy, universal verifiability, and various forms of
robustness. Recent advancements have also been particularly concerned with the
performance aspect. In this paper we will show under which circumstances it is
possible to achieve a scheme with optimal performance for large-scale elections,
while at the same time keeping the system simple and provably secure.

In considering the performance of elections it is clear that the main consid-
eration should be the effort required of a voter. Indeed, while governments can
(and do nowadays) afford a large organizational effort to hold elections, it is
mandatory to make the voting protocol as simple and efficient as possible for
the voter—who might be participating from home using a PC or a Web TV.
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In this paper we present a simple multi-authority election scheme in which
the task of the voter is reduced to the bare minimum. Basically, the voter posts
a single encrypted message (ballot) accompanied with a proof that it contains
a valid vote. For security parameter k, the size of the ballot as well as of its
proof of validity is O(k) bits. Moreover, due to the homomorphic properties of
the encryption method used, the final tally is verifiable to any observer of the
election, while due to the use of a matching fault-tolerant threshold decryption
technique, the individual votes will remain private and the (benign or malign)
failure of authorities can be tolerated.

We work in the model set forth by Benaloh et al. [CF85,BY86,Ben87], where
the active parties are divided into l voters V1, . . . , Vl and n tallying authorities
(talliers) A1, . . . , An. To achieve universal verifiability all parties have access
to a so-called bulletin board. A bulletin board is like a broadcast channel with
memory to the extent that any party (including passive observers) can see the
contents of it, and furthermore that each active participant can post messages by
appending the message to her own designated area. No party can erase anything
from the bulletin board.

In this model, voters cast their votes by posting ballots to the bulletin board.
The ballot does not reveal any information on the vote itself but it is ensured by
an accompanying proof that the ballot indeed contains a valid vote and nothing
else. Due to a homomorphic property of the ballots, the final tally (“sum” of all
votes) can be obtained and verified (by any observer) against the “product” of
all submitted ballots. This ensures universal verifiability.

Although we are emphasizing the application of our scheme to large-scale
elections, it is also suitable for small-scale elections such as boardroom elections.
In the latter case it is even conceivable that each voter plays the role of tallying
authority as well; a PC network will suffice as computing platform.

1.1 Computational versus information-theoretic privacy

By far, the majority of election protocols that support some level of verifiability
(either universal or limited to voters, who can check their own vote) merely pro-
vide computational protection of the voter’s privacy. For example, the schemes
presented by Benaloh et al. [CF85,BY86,Ben87,BT94] all rely on the so-called r-
th residuosity assumption. Once this assumption is broken (e.g., when the public
modulus is factorized), the content of each individual ballot can be decrypted.
Similarly, schemes using anonymous channels or mixes [Cha81] usually rely on
computational assumptions. By recovering the private keys of the mixes, an ad-
versary is able to “open” all ballots posted to the first mix. For example, the
scheme of [SK95] relies on the difficulty of computing discrete logs, both for the
secrecy of the mixes’ private keys and for the contents of the ballots.

The extent to which the lack of information-theoretic privacy is harmful may
be difficult to estimate. For instance, it is hard to predict what happens if fifty-
year old votes of a U.S. president are published—although breaking the encryp-
tion methods for the currently widely used security parameters will probably be
much more harmful.

Whither democracy, from a cryptographic standpoint it is necessary to deter-
mine the limits for computational and information-theoretic privacy. As an aside
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we note that the mere use of multiple authorities can be considered a condition
as well. Indeed, election protocols have been proposed that try to eliminate this
condition, e.g., see [PW92], but the methods used still require conditions re-
garding the channels connecting the participants. Since in our case the bulletin
board is implemented from multiple servers anyway, and it is seen as a necessary
primitive for achieving universal verifiability, we will not consider eliminating
the use of a distributed tallying authority. Yet, to some extent we will take into
account that authorities may be compromised over time, see below.

1.2 Our contributions

In this paper we will see how far one can go if computational privacy is the goal.
For computational privacy it suffices to assume a public broadcast channel (bul-
letin board) as communication model. To make an election scheme information-
theoretically secure, it is generally believed that private channels between voters
and authorities are required. In Section 6.1 we will look into this aspect.

The main result of this paper is a fair election scheme in which the complexity
of the voter’s protocol is linear in the security parameter k—hence optimal. This
comprises the computational as well as the communication complexity (in bits).
The voter needs to communicate only O(k) bits and to perform O(k) modular
multiplications.1 Moreover, the dominating factor for the work of an authority
is O(lk). Compared to the scheme of [CFSY96], we thus achieve a reduction of
the work for each participant by a factor of n.

In the new scheme, the voter just sends a particular ElGamal encryption of
the vote plus a proof that it indeed contains a valid vote. The proof prevents
the voters from casting bogus ballots, and should be such that no information
whatsoever leaks about the actual vote contained in a ballot. The crux is to keep
this proof O(k), and here we follow the approach of [CFSY96]. We will need a
novel application of the technique of [CDS94] for constructing efficient witness
hiding protocols. The resulting proof of validity is a little bit more complicated
than in [CFSY96], but still requires only a few modular exponentiations. A proof
of knowledge similar to our proof of validity has been used by Chen and Pedersen
to construct efficient group signatures [CP95].

Unlike previous schemes based on Benaloh’s approach, however, we will
achieve robustness w.r.t. faulty authorities without increasing the work for the
voter. To this end, we will employ fault-tolerant threshold cryptosystems instead
of (verifiable) secret sharing schemes. In our case there will be only one public
key for which the matching private key is shared among the authorities using
threshold cryptography techniques (see [Des94] for a survey.) The voter posts
the ballot encrypted with the public key of the authorities. The private key is
never reconstructed, and only used implicitly when the authorities cooperate to
decrypt the final tally. The correctness of the decryption will be assured, even
in the presence of malicious authorities.

Apart from achieving a strong set of properties, three major achievements
of our scheme are: (i) The work required of the voter is minimal. Compared to
[CFSY96] the work is reduced by a multiplicative factor of n. Although n is
1 Throughout, we will take a modular multiplication of two O(k) sized numbers as

our unit of work.
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usually much smaller than k, this is still a substantial gain in practice. The work
for the authorities and observers is reduced accordingly. (ii) The protocol for the
voter remains the same even if n is variable. Usually n grows with the desired
security of the scheme (the more authorities the less potential that an adversary
can corrupt, say, half of them). Using our protocol this growth is “transparent”
to the user. (iii) As a bonus, the new scheme can easily be extended using
techniques for proactive threshold cryptosystems [HJJ+97] to leave the system
(and its keys) in place for a really long time without fearing that the secret key
gets compromised (see Section 6.3).

The security of the main scheme presented in the paper is related to the
difficulty of the discret log problem. In Section 5 we describe an alternative
construction related to the hardness of factoring. Finally, in Section 4 we show
how our approach can be extended to more general classes of elections, and
in Section 6.2 we consider the issue of receipt-free or incoercible elections and
discuss the relevance of our paper in this area.

2 The building blocks

2.1 Bulletin board

The communication model required for our election scheme is best viewed as
a public broadcast channel with memory, which is called a bulletin board. All
communication through the bulletin board is public and can be read by any
party (including passive observers). No party can erase any information from
the bulletin board, but each active participant can append messages to its own
designated section.

To make the latter requirement publicly verifiable, we assume that digital
signatures are used to control access to the various sections of the bulletin board.
Here we may take advantage of any public-key infrastructure that is already in
place. Also note that by postulating that each participant can indeed append
messages to its section, it is implicitly assumed that denial-of-service attacks
are excluded. This property is realized by designing the bulletin board as a set
of replicated servers implementing Byzantine agreement, for instance, such that
access is never denied as long as at most a third of the servers is compromised.
Reiter’s work on the Rampart system shows that this can be done in a secure
and practical way (see, e.g., [Rei94,Rei95]).

2.2 ElGamal cryptosystem

Our election scheme relies on the ElGamal cryptosystem [DH76,ElG85]. It is
well-known that the ElGamal cryptosystem works for any family of groups for
which the discrete logarithm is considered intractable. Part of the security of
the scheme actually relies on the Diffie-Hellman assumption, which implies the
hardness of computing discrete logarithms [DH76]. Although all our construc-
tions can easily be shown to work in this general discrete log setting, we will
present our results for subgroups Gq of order q of ZZ∗p, where p and q are large
primes such that q | p − 1. Other practical families can be obtained for elliptic
curves over finite fields.



www.manaraa.com

We will now briefly describe the ElGamal cryptosystem, where the primes p
and q and at least one generator g of Gq are treated as system parameters. These
parameters as well as other independent generators introduced in the sequel
should be generated jointly by (a designated subset) of the participants. This
can be done by letting the participants each run a copy of the same probabilistic
algorithm, where the coinflips are generated mutually at random.

The key pair of a receiver in the ElGamal cryptosystem consists of a private
key s (randomly chosen by the receiver) and the corresponding public key h = gs,
which is announced to the participants in the system.

Given a message m ∈ Gq, encryption proceeds as follows. The sender chooses
a random α ∈ ZZq, and sends the pair (x, y) = (gα, hαm) as ciphertext to the re-
ceiving party. To decrypt the ciphertext (x, y) the receiver recovers the plaintext
as m = y/xs, using the private key s.

2.3 Robust threshold ElGamal cryptosystem

The object of a threshold scheme for public-key encryption is to share a private
key among a set of receivers such that messages can only be decrypted when a
substantial set of receivers cooperate. See [Des94] for a survey. The main proto-
cols of a threshold system are (i) a key generation protocol to generate the private
key jointly by the receivers, and (ii) a decryption protocol to jointly decrypt a
ciphertext without explicitly reconstructing the private key. For the ElGamal
system described above, solutions for both protocols have been described by
Pedersen [Ped91,Ped92], also taking robustness into account.
Key generation As part of the set-up procedure of the election scheme, the
authorities will execute a key generation protocol due to Pedersen [Ped91]. The
result of the key generation protocol is that each authority Aj will possess a
share sj ∈ ZZq of a secret s. The authorities are committed to these shares as
the values hj = gsj are made public. Furthermore, the shares sj are such that
the secret s can be reconstructed from any set Λ of t shares using appropriate
Lagrange coefficients, say:

s =
∑
j∈Λ

sjλj,Λ, λj,Λ =
∏

l∈Λ\{j}

l

l − j
. (1)

This is exactly as in Shamir’s (t, n)-threshold secret sharing scheme [Sha79].
The public key h = gs is announced to all participants in the system. Note
that no single participant learns the secret s, and that the value of s is only
computationally protected.2

Decryption To decrypt a ciphertext (x, y) = (gα, hαm) without reconstructing
the secret s, the authorities execute the following protocol:

1. Each authority Aj broadcasts wj = xsj and proves in zero-knowledge that

logg hj = logx wj .

2 The private channels assumed in Pedersen’s key generation protocol may be imple-
mented using public key encryption and the bulletin board. This suffices for compu-
tational security.
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Prover Verifier
[(x, y) = (gα, hα)]

w ∈R ZZq

(a, b)← (gw, hw) −−−
a, b
−−−−−→

←−−−−
c
−−−− c ∈R ZZq

r← w + αc −−−−
r
−−−−→ gr

?
= axc

hr
?
= byc

Fig. 1. Proof of knowledge for logg x = logh y.

2. Let Λ denote any subset of t authorities who passed the zero-knowledge
proof. By raising x to both sides of equation (1), it follows that the plaintext
can be recovered as

m = y/
∏
j∈Λ

w
λj,Λ
j .

Note that step 2 assures that the decryption is correct and successful even if up to
n−t authorities are malicious or fail to execute the protocol. The zero-knowledge
proof of step 1 will be described in the next section.

2.4 Proofs of knowledge for equality of discrete logs

Using the same notation as above, we present proofs of knowledge for the relation
logg x = logh y, whereby a prover shows possession of an α ∈ ZZq satisfying
x = gα and y = hα. An efficient protocol for this problem is due to Chaum and
Pedersen [CP93], see Figure 1. This protocol is not known to be zero-knowledge
or witness hiding. The following result however suffices for our application (see
also [CDS94] for definitions of the notions involved).

Lemma 1 The Chaum-Pedersen protocol is a three-move, public coin proof of
knowledge for the relation logg x = logh y. The proof satisfies special soundness,
and is special honest-verifier zero-knowledge.

Proof. The protocol inherits its properties from the underlying Schnorr protocol
[Sch91]. Special soundness holds because from two accepting conversations with
the same first move (a, b, c, r) and (a, b, c′, r′), c 6= c′, a witness w = r−r′

c−c′ can be
extracted satisfying x = gw and y = hw. Honest-verifier zero-knowledge holds
because, for random c and r we have that (grx−c, hry−c, c, r) is an accepting
conversation with the right distribution. Since the challenge c can be chosen
freely, we also have special honest-verifier zero-knowledge.

Notice that the above protocol is zero-knowledge only against the honest
verifier, but this suffices for our purpose (see, e.g., [Cha91] for an efficient zero-
knowledge protocol). Indeed, jumping ahead a little, in order to make our pro-
tocols non-interactive, the verifier will be implemented using either a trusted
source of random bits (a beacon as in [Rab83,Ben87]) or using the Fiat-Shamir
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heuristic [FS87] which requires a hash function. In the latter case security is
obtained for the random oracle model.

2.5 Homomorphic encryption

Homomorphic encryption schemes form an important tool for achieving univer-
sally verifiable election schemes. A general definition of the notion is as follows.
Let E denote a probabilistic encryption scheme. Let M be the message space
and C the ciphertext space such that M is a group under operation ⊕ and C is
a group under operation ⊗. We say that E is a (⊕,⊗)-homomorphic encryption
scheme if for any instance E of the encryption scheme, given c1 = Er1(m1) and
c2 = Er2(m2), there exists an r such that

c1 ⊗ c2 = Er(m1 ⊕m2).

Homomorphic encryption schemes are important to the construction of election
protocols. If one has a (+,⊗) scheme, then if ci are the encryptions of the single
votes, by decrypting c = c1 ⊗ . . . ⊗ cm one obtains the tally of the election,
without decrypting single votes.

The ElGamal cryptosystem as presented above already satisfies this defi-
nition, where the message space is Gq with multiplication modulo p as group
operation, and the ciphertext space is Gq ×Gq with componentwise multiplica-
tion modulo p as group operation. Namely, given an ElGamal encryption (x1, y1)
of m1 and an ElGamal encryption (x2, y2) of m2, we see that (x1x2, y1y2) is an
ElGamal encryption of m1m2.

For the reasons sketched above however, we need to take this one step further
to a homomorphic scheme with addition as group operation for the message
space. That is, instead of Gq, our message space will be ZZq with addition modulo
q as group operation. Given a fixed generator G ∈ Gq, the encryption of a
message m ∈ ZZq will be the ElGamal encryption of Gm. The observation is
now that, given two such encryptions of m1 and m2, respectively, the product is
an encryption of m1 + m2 modulo q. Notice that for such a scheme decryption
involves the computation of a discrete log, which is a hard task in general.
Nevertheless it can be done efficiently for “small” messages, as will be the case
in our election scheme (see Section 3).

2.6 Efficient proofs of validity

In our election each voter will post an ElGamal encryption of either m0 or
m1, where m0 and m1 denote distinct elements of Gq. (Later we will consider
suitable values for m0 and m1.) The encryption should be accompanied by a
proof of validity that proves that the encryption indeed contains one of these
values. Furthermore, the proof should not reveal any information about which
one.

Consider an ElGamal encryption of the following form:

(x, y) = (gα, hαm), with m ∈ {m0,m1},
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Voter Verifier

v = 1 v = −1
α,w, r1, d1 ∈R ZZq α,w, r2, d2 ∈R ZZq

x← gα x← gα

y← hαG y← hα/G
a1← gr1xd1 a1← gw

b1← hr1(yG)d1 b1← hw

a2← gw a2← gr2xd2

b2← hw b2← hr2(y/G)d2
−
x, y, a1, b1, a2, b2
−−−−−−−−−−−−−→

d2← c− d1 d1← c− d2 ←−−−−−−
c
−−−−−− c ∈R ZZq

r2← w − αd2 r1← w − αd1 −−
d1, d2, r1, r2
−−−−−−−−−−−→ c

?
= d1 + d2

a1
?
= gr1xd1

b1
?
= hr1(yG)d1

a2
?
= gr2xd2

b2
?
= hr2(y/G)d2

Fig. 2. Encryption and Proof of Validity of Ballot (x, y)

where the prover knows the value of m. To show that the pair (x, y) is indeed
of this form without revealing the value of m boils down to a witness indistin-
guishable proof of knowledge of the relation given by:

logg x = logh(y/m0) ∨ logg x = logh(y/m1).

The prover either knows a witness for the left part or a witness for the right part
(but not both at the same time), depending on the choice for m.

By the techniques of [CDS94], we can now immediately obtain a very efficient
witness indistinguishable proof of knowledge for the above relation. To prove
either of the two equalities we have the efficient proof of knowledge by Chaum
and Pedersen, described above, for which we have prepared Lemma 1. On account
of this lemma, we have that the protocol exactly satisfies the conditions for the
construction of [CDS94]. See Figure 2 for a preview of the protocol, as it is used
in the election scheme of the next section.

3 Multi-authority election scheme

Given the primitives of the previous section we now assemble a simple and effi-
cient election scheme. The participants in the election protocol are n authorities
A1, . . . , An and l voters V1, . . . , Vl. Recall that the requirements for a ballot are
that it must contain a vote in an unambiguous way such that (i) votes accu-
mulate when ballots are aggregated, and (ii) the proof of validity shows that a
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ballot contains either a yes-vote or a no-vote, without revealing any information
on which of the two is the case.

To show that the same masking technique as in [SK94,CFSY96] can be used,
we instantiate the scheme of Section 2.6 with m1 = G and m0 = 1/G, where G
is a fixed generator of Gq. Thus a ballot is prepared as an ElGamal encryption
of the form (x, y) = (gα, hαGb) for random b ∈R {1,−1}, and the corresponding
proof of knowledge is depicted in Figure 2. To cast a ballot the voter posts
an additional number e ∈ {1,−1} such that v = be is equal to the desired
vote. Alternatively, voters may adapt the precomputed values before sending
the ballot out, i.e., precompute (x, y) and then post (xe, ye).

In order to make vote casting non-interactive we compute the challenge c as
a hash value of the first message of the proof. In this case security is retained in
the random oracle model, but some care is required to prevent vote duplication.
Each challenge must be made voter-specific (see [Gen95]), i.e., the challenge c is
computed by voter Vi as H(ID i, x, y, a1, b1, a2, b2), where ID i is a unique public
string identifying Vi.

As part of the initialization the designated parties generate the system pa-
rameters p, q, g,G, as described in Section 2.2, where we may safely assume
that l < q/2 for any reasonable security parameter k. Secondly, the authorities
execute the robust key generation protocol as described in Section 2.3. The tran-
scripts of these protocol should appear on the bulletin board. Note that this also
shows to any observer that indeed n authorities are taken part in the scheme,
which is otherwise not visible to the voters.

The main steps of the voting protocol now are, where we assume w.l.o.g. that
only correct ballots are cast:

1. Voter Vi posts a ballot (xi, yi) to the bulletin board accompanied by a non-
interactive proof of validity.

2. When the deadline is reached, the proofs of validity are checked by the
authorities and the product (X,Y ) = (

∏l
i=1 xi,

∏l
i=1 yi) is formed.

3. Finally, the authorities jointly execute the decryption protocol of Section 2.3
for (X,Y ) to obtain the value of W = Y/Xs. A non-interactive proof of
knowledge is used in Step 1 of the decryption protocol.

We thus get W = GT as a result, where T is equal to the difference between
the number of yes-votes and no-votes, −l ≤ T ≤ l. Hence, T = logGW which
is in general hard to compute. However, in our case we can now fully exploit
the fact that the number of voters l is relatively small—certainly polynomial
in the security parameter! The value of T can be determined easily using O(l)
modular multiplications only, by iteratively generating G−l, G−l+1, G−l+2, . . .
(each time using one multiplication) until W is found. Asymptotically, the work
does therefore not increase for the authorities (at most two multiplications per
voter). Note also that the computation of logGW may be done by any party
because the result is verifiable.3

The time and communication complexity of the scheme is as follows. The
work for a voter is clearly linear in k, independent of the number of authorities.
3 If this O(l) search method is considered too slow for a large-scale election, Shanks’

baby-step giant-step algorithm (see, e.g., [LL90, Section 3.1]) can be applied to find

T in O(
√
l) time using O(

√
lk) bits of storage.
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The work for the authorities is onlyO(lk+nk) (assuming that the zero-knowledge
proof used in step 3 is O(k), hence negligible). Since we may safely assume that
the number of voters is larger than the number of authorities, the work for the
authorities is actually O(lk). Similarly, the work for an observer who wants to
check the outcome of the election is O(lk).

Theorem 2 Under the Diffie-Hellman assumption, our election scheme pro-
vides universal verifiability, computational privacy, robustness, and prevents vote
duplication.

Actually, parts of this theorem also hold under the discrete log assumption, but
for conciseness we are only referring to the Diffie-Hellman assumption (which
is required to show that the ElGamal encryptions used do not leak information
about the votes). For the non-interactive version of the scheme based on the
Fiat-Shamir heuristic, the result holds in the random oracle model.

4 Extension to multi-way elections

Instead of offering a choice between two options, it is often required that a choice
between several options can be made. There are numerous approaches to tackle
this problem. Below, we sketch an approach fow which the size of the ballots does
not increase (but the size of the proof of validity does), which again relies on the
construction of [CDS94]. To get an election for a 1-out-of-K choice, we simply
take K (independently generated) generators Gi, 1 ≤ i ≤ K, and accumulate
the votes for each option separately. The proof of validity of a ballot (x, y) now
boils down to a proof of knowledge of

logg x = logh(y/G1) ∨ · · · ∨ logg x = logh(y/GK).

Since the voter can only generate this proof for at most one generator Gi, it is
automatically guaranteed that the voter cannot vote for more than one option
at a time.

The problem of computing the final tally is in general more complicated.
After decryption by the authorities, a number W is obtained that represents the
final tally, W = GT1

1 · · ·G
TK
K , where the Ti’s form the result of the election. Note

that the Ti’s are uniquely determined by W in the sense that computation of a
different set T ′i ’s satisfying W = G

T ′1
1 · · ·G

T ′K
K would contradict the discrete log

assumption, using the fact that the generators Gi are independently generated.
Since Ti ≥ 0 and

∑K
i=1 Ti = l, computation of the Ti’s is feasible for reasonable

values of l and K.4

4 Note that the condition
∑K

i=1
Ti = l can be exploited by reducing the problem to a

search for T1, . . . , TK−1 satisfying

W/GlK = (G1/GK)T1 · · · (GK−1/GK)TK−1 ,

where Ti ≥ 0 and
∑K−1

i=1
Ti ≤ l. The naive O(lK−1) method (which checks all

possible combinations) can now be improved considerably by a generalization of the

baby-step giant-step algorithm of time O(
√
l
K−1

).
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Prover Verifier
[x = αq]

w ∈R ZZ∗N
a← wq −−−−

a
−−−−→

←−−−−
c
−−−− c ∈R ZZq

r← wαc −−−−
r
−−−−→ rq

?
= axc

Fig. 3. Proof that x is a q-th residue.

5 Alternative number-theoretic assumption

To show the generality of our approach we now present a scheme for which the
security is related to the difficulty of factoring. Specifically, we present a scheme
based on the q-th residuosity assumption (as in the original Benaloh schemes).
The notion of q-th residues is an extension of quadratic residues. A number x
is a q-th residue modulo N if there exists an α such that αq = x(mod N). It is
believed to be hard to distinguish between q-residues and non q-residues.

This suggests the following homomorphic encryption scheme. We present a
specific implementation which is suitable to threshold cryptography techniques.
The parameters of the scheme are a modulus N = PQ, where P = 2P ′ + 1 and
Q = 2qQ′ + 1, with P,Q, P ′, Q′, q all large primes. As before, the prime q can
thus be assumed to be larger than twice the number of voters l. Also the public
key must include a fixed number Y ∈ ZZ∗N which is not a q-th residue modulo N .

We will consider messages from ZZq. The ciphertext for a message m is now
Eα(m) = αqY m, where α ∈R Z∗N . As before, decryption is hard, in general, but
in our case an exhaustive search for all possible values suffices. The right m is
detected when by computing (cY −m)φ(N)/q mod N one gets back 1. Note that
c′ = cφ(N)/q mod N and Y ′ = (Y −1)φ(N)/q mod N can be computed first, and
then test for c′Y ′m, where m is selected from all possible messages.

Next we discuss a robust threshold cryptosystem for this setting. Notice that
the value d = φ(N)/q could be considered the secret key of the scheme, and that
decryption is carried out by simply computing exponentiations (modulo N) with
exponent d. As the setting is very similar to an RSA decryption, we can apply
the result of [GJKR96] to obtain an efficient and robust threshold decryption
procedure. The result in [GJKR96] holds for RSA moduli which are the product
of safe primes (i.e., P = 2P ′+ 1 and Q = 2Q′+ 1), but it can easily be extended
to work for our specific needs.

The key generation protocol, however, relies on secure multiparty computa-
tions as there is no known efficient way to perform a distributed key generation
algorithm for factoring based schemes. However, since this task is part of the
set-up of the scheme, this may be acceptable as a one-time operation.

Our final task is to construct an efficient proof of validity that shows that a
ballot x is correctly formed. This amounts to showing that x = αqY v, for some
α, with v ∈ {1,−1}, hence that either x/Y or xY is a q-th residue. As before,
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Lemma 3 below guarantees the existence of an efficient proof of validity, based
on the construction of [CDS94].

Lemma 3 The protocol of Figure 3 is a three-move, public coin proof of knowl-
edge for r-th residuosity. The proof satisfies special soundness, and is special
honest-verifier zero-knowledge.

Proof. Similar to proof of Lemma 1. Special soundness now holds because for
any two accepting conversations (a, c, r) and (a, c′, r′), c > c′, it follows that
(r/r′)q = xc−c

′
. Since 0 < c − c′ < q we have that there exist integers k, l s.t.

(c− c′)k = 1 + lq, hence (r/r′)kq = xlq+1, which yields ((r/r′)kx−l)q = x.

Theorem 4 Under the q-th residuosity assumption, our election scheme pro-
vides universal verifiability, computational privacy, robustness, and prevents vote
duplication.

6 Discussion

6.1 Information-theoretically secure elections

The scheme of [CFSY96] in principle provides information-theoretic protection
of the voter’s privacy. This is due to the fact that voters post (a number of)
information-theoretically hiding commitments to the bulletin board and that
these commitments are opened to the authorities using private channels. A gen-
eral problem with such a solution is that the use of private channels opens the
possibility for disputes: on the one hand a dishonest voter may just skip sending
a message to an authority, while on the other hand a dishonest authority may
claim not to have received a message.

It is therefore worthwhile to limit the possibility for disputes to the set-up
process for the election. During the election protocol itself no disputes on the
usage of the private channel should be possible. The idea is to use a public
broadcast channel (such as a bulletin board) on which the parties post com-
mitments to mutually selected keys. Each pair of parties first agrees on a key
using a secure channel. Only if both parties broadcast the same commitment, the
set-up of the private channel succeeded. Otherwise, there is a dispute that must
be solved at this stage. It is important that (i) the commitment is information-
theoretically hiding and (ii) the encryption method is information-theoretically
secure (a one-time pad). More concretely, the two phases are as follows:
Set-up Both parties agree on a mutually at random selected key K and a com-
mitment B on this key. Both parties broadcast a signed copy of the commitment.
The key set-up is only succesful if both parties broadcast the same commitment.
Disputes in this stage have to be resolved in a procedural way.
Communication To send a messagem, the sender will broadcast the encryption
EK(m) over the public channel. Only the intended receiver is able to recover the
message.

Using this method, private channels can be set up from each voter Vi to each
authority Aj . Once set up succeeds there can be no dispute on the use of the
private channel. Anybody sees if the voter abstains from posting the required
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values to the bulletin board. If what the voter submits consists of incorrect
shares, the respective authorities open the commitments to the key so that this
fact can be verified. Note that for the scheme of [CFSY96] the use of the private
channels is limited to two elements of ZZq per channel.

6.2 Incoercible protocols

Receipt-free or incoercible election scheme that have been proposed so far all
rely on some form of physical assumption [BT94,NR94,SK95]. The minimal as-
sumption required (as in [SK95]) is the existence of a private channel between
the voters and the authorities. These schemes allow a voter to lie about the vote
cast even if under coercion, but not up to the level that coercer who exactly
prescribe which private random bits the voter must use can be withstood. In-
deed given the execution of the protocol the voter will be able to create two
different histories of his computations, both consistent with the execution but
corresponding to two different votes. All these schemes also require that the au-
thorities are incoercible, or alternatively that voters know which ones have been
coerced. Moreover, as pointed out in the previous section, the use of private
channels gives rise to disputes. (Another viable approach is to assume that the
voters dispose of a tamper-proof encryption box such as a smartcard, but we
consider this beyond the scope of this paper.)

Recently, Canetti and Gennaro in [CG96] proved that general secure mul-
tiparty computation protocols can be made incoercible without the above as-
sumptions, in particular without assuming untappable channels. Their scheme
is based on a new type of encryption called deniable encryption introduced in
[CDNO96] that allows a sender to encrypt a bit b in such a way that the resulting
ciphertext can be “explained” as either b or 1− b to a coercer. The construction
in [CG96] works for the general problem of secure multi-party computation; as
such it is described in terms of a complete network of communication and the
result holds as long as at most half of the players in the network are coerced. For
the case of election schemes, the construction of [CG96] can be scaled down to
the bulletin board model (thus not requiring communication between voters). In
this model all voters can withstand coercion provided the coercer is not able to
prescribe the random bits of the voters, and at most half of the authorities can
be completely coerced. The complexity of the resulting scheme is high (although
polynomial), but opens the door to the search for efficient incoercible schemes.

In order to make our election scheme incoercible (without physical assump-
tions) we would need a deniable encryption scheme which is (i) homomorphic,
(ii) suitable to threshold cryptography techniques. An interesting open problem
is thus to construct such a scheme.

6.3 Proactive Security

The secrecy of the votes is protected against coalitions of up to t−1 authorities.
In other words, an attacker must recover t shares of the private key in order to
be able to decrypt single votes. This is similar to previous protocols in which the
vote is (t, n)-shared among the authorities. We note that the use of threshold
cryptography instead of secret sharing presents also some advantages in this
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area. Using proactive security techniques (see [HJKY95,HJJ+97,FGMY96]) it
is possible to leave the public key of the system in place for a really long time
without fearing it being compromised. Indeed, when using proactive schemes the
shares of the private key are periodically “refreshed” so that an attacker is forced
to recover t shares in one single period of time that can be as short as a day.
Both schemes presented in this paper can be made proactive, the discrete-log
based one using the techiniques in [HJJ+97] and the factoring one by adapting
the work of [FGMY96]. The idea is that the authorities run the key generation
protocol every day at midnight, say, but now sharing a zero value. The new
shares are added to the old shares of the secret key s. The resulting shares still
interpolate to s (since the free term of the polynomial is unchanged) but lie on
an otherwise different polynomial.

7 Concluding remarks

We have shown a very efficient scheme for secure elections based on the discrete
log assumption, and a somewhat more complicated scheme based on the q-th
residuosity assumption. The new schemes satisfy all well-known requirements,
except for receipt-freeness. An open problem is to construct efficient incoercible
election protocols, preferably without relying on physical assumptions.

In our scheme the work for the voter is minimal and independent of the
number of authorities. Election schemes based on the mix channel of [PIK94]
also have this property but for several reasons our approach is preferable over
those schemes. In mix-based schemes the final tally is computed by somehow
decrypting the individual ballots, while in our approach a single decryption of
the aggregate of the ballots suffices. In mix-based schemes disrupters may submit
invalid ballots which are detected only after decryption has taken place; in our
scheme disruption by voters is automatically prevented because of the required
proof of validity for ballots. Another important difference is that due to the use
of a threshold cryptosystem we achieve robustness in a stronger sense. Indeed in
mix-based schemes the failure of a single authority would compromise the whole
protocol. In our case we can tolerate malicious behavior of a constant fraction
(half) of authorities. Finally, the security of our scheme can be proven from its
construction, while some security problems with the schemes of [PIK94,SK95]
exist, as shown for instance in [Pfi95,MH96].

We would like to emphasize that the work for the voter is really low. For ex-
ample, for the discrete log scheme, we have for |p| = 64 bytes and |q| = 20 bytes,
that the size of the ballot plus its proof plus a signature on it is only 272 bytes
in total. Clearly, this is an order of magnitude better than [CFSY96], which was
already two orders of magnitude better than any previous scheme. Furthermore,
computation of the ballot and its proof require a few exponentiations only (see
Figure 2). A direct consequence of the reduced ballot size is also that the task
of verifying the final tally is much simpler.
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